INTRODUCTION

A 99-Million-Year-Old Bioluminescent Beetle has been recently discovered in Myanmar. Excerpts from the sci-news.com report:

  • Found in a piece of mid-Cretaceous amber from northern Myanmar, the wonderfully-preserved male of Cretophengodes azari has a light organ on the abdomen which presumably served a defensive function.
  • Bioluminescence, the production of light by living organisms, evolved over 30 times independently on diverse branches of the tree of life including algae, cnidarians, fishes and marine worms.
  • On land, light-producing beetles are the most widespread and abundant bioluminescent organisms. Their elaborate flash displays play a role in mate recognition as well as in signaling, communication and luring prey.
  • The majority of these beetles — over 2,300 species — belong to the megadiverse superfamily Elateroidea (fireflies, fire beetles, glow-worms).
  • The evolution of bioluminescence in these beetles is associated with unusual morphological modifications, such as soft-bodiedness and neoteny (delaying or slowing of the physiological development), but the fragmentary nature of their fossil record discloses little about the origin of these adaptations.
  • The ancient beetle was so unique that the researchers created a new family, Cretophengodidae, for it.
  • The findings were published in the Proceedings of the Royal Society B.

BIOLUMINESCENCE APPLICATIONS

From an article “How illuminating” (2011) in The Economist:

  • illuminating other biological processes
  • monitoring the spread of disease
  • detecting submarines
  • monitoring pollution
  • Glowing puppies have already been created
  • there is talk of glowing trees and even glowing food.

More excerpts from the same article:

  • The light-generating reactions used by fireflies and jellyfish occur in many other organisms. In addition, some organisms are also capable of fluorescence. The bioluminescing photoprotein inside the jellyfish species Aequorea victoria, for example, creates a blue light—yet the jellyfish itself emits a green light.
  • This baffled researchers for years until it was discovered, in 1955, that the jellyfish has a special protein attached to every light-generating cell in its body. When exposed to the blue light from the bioluminescent reaction, this protein, called green fluorescent protein (GFP), glows bright green.
  • In 1992 Dr Prasher also cloned GFP, so that it no longer had to be harvested from living creatures. This expanded the possibilities for exploiting bioluminescence dramatically, because it meant that GFP did not have to be injected into tissue. Instead, the gene sequence for GFP could be added to the genome of a living organism, making possible new ways to track the behaviour of its cells.
  • One such question, that of how damaged tissues regenerate, is being studied in salamanders by Elly Tanaka and a team of colleagues at the Max Planck Institute in Dresden. The salamander species that the scientists are working with, Ambystoma mexicanum, is more commonly called the Mexican axolotl and is well known for being able to regrow severed parts of its body, such as its limbs and jaws.
  • To shed more light on the process, the research team used genetic engineering to make axolotls that produce GFP throughout their bodies. The researchers took pieces of limb tissue—such as dermis, cartilage and muscle—from these transgenic animals and transplanted them into the limbs of ordinary axolotls. Once the tissues were safely in place, the recipients of the transplanted tissue had limbs amputated. The severing of the limb activated the tissues at the point of amputation, including the transplanted fluorescing tissues, and allowed the team to see how the different types of cells behaved during the regeneration process.
  • The researchers found that some tissues, like the dermis, could become other tissue types, like cartilage, but that others, such as muscle, were much less flexible and remained muscle throughout the process. Although the findings do not reveal how to regenerate a severed human limb, they do provide valuable information about how cells can be expected to behave as researchers move closer and closer towards that ultimate goal. “What fluorescent proteins are providing, in the axolotl experiment and so many others, is a new way of seeing,” says Dr Zimmer. “Like the invention of the microscope, they are allowing us to watch what could never have been watched before.”
  • Dr Maitland has to use specialised camera equipment to see the glowing red cancer cells inside the human body. But he has already been able to demonstrate that infecting cancer cells with a red glow can help reveal prostate tumours. And in future, tracking the glow may help reveal how cancer cells behave when a tumour starts spreading cancer around the body. Christopher Rose, chief technology officer at Vantage Oncology, a provider of cancer treatments in California, says the use of bioluminescence is “a terrific way to better understand tumour behaviour”.
  • It also has applications in surgery. A team led by Quyen Nguyen, a surgeon at the University of California, San Diego, has devised a way to illuminate nerves so that they are less likely to be cut accidentally, causing lasting damage. The researchers created a molecule that binds preferentially to nerve cells, and labelled it with a fluorescent tag. When it is injected into a mouse, it spreads around the animal’s body, so that all its nerves (though not its brain or spinal cord) become fluorescent within two hours. The effect wears off a few hours later. The technique has also been shown to work in human tissue, though it has yet to enter formal trials.
  • Specifically, America’s navy wants to be able to forecast whether a vessel in a particular location might cause a bioluminescent glow that would give away its position, says Dr Widder. So, together with James Case at the University of California, Santa Barbara, she devised a device that measures marine bioluminescence by pumping water through a grid that excites bioluminescent organisms and measures how brightly they glow. A network of such devices could reveal where vessels can operate undetected, or where special operations forces can come ashore without being given away. “The first system cost $500,000 and was the size of a motorcycle,” says Dr Widder. Newer versions are the size of waste bins and cost $10,000.
  • Bioluminescence monitoring has other uses too, such as detecting pollution. Dr Widder is working with a bioluminescent bacterium species called Vibrio fischeri that is sensitive to a wide variety of pollutants. Its ability to bioluminesce is linked to its respiration, and its respiration is almost always depressed when it is struggling with pollution. Measuring the brightness of the bacteria thus provides a simple way to determine pollution levels. “We know things are really bad when the light goes out,” says Dr Widder.
  • Jan van der Meer at the University of Lausanne in Switzerland is taking the idea of using bioluminescent bacteria as pollution monitors a step further, by tinkering with their genetics. It is neater, he says, to have organisms that glow brighter, rather than becoming fainter, as the environment becomes more toxic. Unfortunately there are no organisms that do this naturally. But using genetic engineering Dr van der Meer and his colleagues have coupled the light-generating reactions in bacteria to metabolic processes associated with handling pollution. Linking light-generating reactions with these reactions, rather than respiration, makes the organisms glow brighter as the pollution level increases.
  • And because different bacterial species are sensitive to different pollutants, different coloured glows can indicate the presence of specific chemicals. Dr van der Meer imagines his genetically modified bacteria being used at sites where chemical spills or oil leaks are suspected. “A sample of water can be exposed to the bacteria, and the light generated allows a quick analysis to be made without the need for the usual high-end equipment,” he says. The bacteria could be housed in sampling buoys in watery environments, with readings regularly reported to a central monitoring station.
  • In November 2010 a team of undergraduates at the University of Cambridge took the first steps towards engineering bioluminescent trees that could replace streetlights, thus reducing electricity consumption and related carbon-dioxide emissions.
  • Another potential use for glowing plants is to indicate the health of crops. “You can put luciferase into plants and tether it to plant stress genes to make sure crops are healthy,” says Laurence Tisi, a bioluminescence researcher at Lumora, a molecular-diagnostics company based in Britain. A field would glow in areas where insects were attacking the crops, allowing insecticides to be deployed appropriately. Plants could also glow when they need water, to keep irrigation to a minimum. Researchers at the University of Edinburgh, in Scotland, have already developed potatoes that do just this.
  • BioLume, a privately held biotechnology company based in North Carolina, believes such concerns can be overcome. It is developing bioluminescent proteins for use in the food industry, and hopes to incorporate them into a range of products, from glowing icing on cakes to glowing lollipops and chewing gum. 

[To be continued, last updated 12:37 AM 1/27/2021]